
OpenFst: a General and Efficient Weighted Finite-State Transducer Library

Part II. Applications

Common Elements of FST Applications

• Models

– Constructed

∗ Direct automata specification

∗ Regular expressions

∗ Rewrite rules

∗ Context-dependency transducer

∗ Rule-based grammars

– Learned

∗ n-gram language models

∗ Pair n-gram language models

∗ EM-estimated models (known topology)

• Cascades and Search

– Composition and intersection

– Shortest path and shortest distance

– FST optimization

OpenFst Part II. Applications Introduction 1

Example Applications

(These are drawn from www.openfst.org/FstExamples)

OpenFst Part II. Applications Example Applications 2

Example Domain and Data

The common data files used in the examples are all available from www.openfst.org.

wotw.txt text of H.G. Well’s War of the Worlds

wotw lm.fst 5-gram language model FST for wotw.txt

wotw.syms FST symbol table file for wotw lm.fst

ascii.syms FST symbol table file for ASCII letters

• With these files and the descriptions that follow, the reader should be able

to repeat the examples.

• With about 340,000 words in The War of the Worlds, it is a small, public-

domain corpus that allows non-trivial examples.

• The n-gram model was built with OpenGrm (soon to be available at

www.opengrm.org).

OpenFst Part II. Applications Example Applications 3

Tokenization - I

• Converts sequence of ASCII characters into word tokens with punctuation

and whitespace stripped.

• Create a lexicon transducer that maps from letters to their corresponding

word tokens.

• Begin with a lexicon transducer of a single word Mars

$ fstcompile --isymbols=ascii.syms --osymbols=wotw.syms >Mars.fst <<EOF

0 1 M Mars

1 2 a <epsilon>

2 3 r <epsilon>

3 4 s <epsilon>

4

EOF

0 1
M:Mars

2
a :<eps i lon>

3
r :<eps i lon>

4
s :<eps i lon>

OpenFst Part II. Applications Example Applications 4

Tokenization - II

Suppose Martian.fst and man.fst are similarly created, then:

$ fstunion man.fst Mars.fst | fstunion - Martian.fst | fstclosure >lexicon.fst

produces a finite-state lexicon that transduces zero or more spelled-out word

sequences into to their word tokens:

1 9 0
<eps i lon> :<eps i l on>

1
m:man

4<eps i lon> :<eps i l on>

9

<eps i lon> :<eps i l on>

2a :<eps i lon>

5M:Mars

1 0
M:Martian

3
n :<eps i l on>

1 7

<eps i lon> :<eps i l on>

< s p a c e > : < e p s i l o n >

! :<eps i lon>

6a :<eps i lon> 7r :<eps i lon> 8
s :<eps i lon> <eps i lon> :<eps i l on>

1 1a :<eps i lon> 1 2r :<eps i lon> 1 3
t :<eps i l on>

1 4
i :<epsi lon>

1 5
a :<eps i lon> 1 6n :<eps i l on>

<eps i lon> :<eps i l on>

<eps i lon> :<eps i l on>

OpenFst Part II. Applications Example Applications 5

Tokenization - III

The non-determinism and non-minimality in the lexicon transducer can be

removed with:

$ fstrmepsilon lexicon.fst | fstdeterminize | fstminimize >lexicon opt.fst

resulting in the equvialent, deterministic and minimal:

0

1M:<epsi lon>

2m:man

3
a :<eps i lon>

4
a :<eps i lon>

5
r :<eps i lon>

n :<eps i lon>

s:Mars

7
t:Martian

< s p a c e > : < e p s i l o n >

! :<eps i lon>

i :<epsi lon>

OpenFst Part II. Applications Example Applications 6

Tokenization - IV

To handle punctuation symbols, we change the lexicon construction to:

$ fstunion man.fst Mars.fst | fstunion - Martian.fst |

fstconcat - punct.fst | fstclosure >lexicon.fst

where:

$ fstcompile --isymbols=ascii.syms --osymbols=wotw.syms >punct.fst <<EOF

0 1 <space> <epsilon>

0 1 . <epsilon>

0 1 , <epsilon>

0 1 ? <epsilon>

0 1 ! <epsilon>

1

EOF

is a transducer that deletes common punctuation symbols.

OpenFst Part II. Applications Example Applications 7

Tokenization - V

The tokenizaton of the example string Mars man encoded as an FST:

0 1
m:m

2
a:a

3
r:r

4
s:s

5
< s p a c e > : < s p a c e >

6
m:m

7
a:a

8
n :n !:!

can be accomplished with:

$ fstcompose Marsman.fst lexicon opt.fst | fstproject -- project output |

fstrmepsilon >tokens.fst

giving:

0 1
Mars:Mars

2
m a n : m a n

OpenFst Part II. Applications Example Applications 8

Downcasing Text - I

• Convert case-sensitive input to all lowercase output.

• Create a flower transducer of the form:

0

a:a
b:b
A:a
B:b
!:!

$ fstcompile --isymbols=ascii.syms --osymbols=ascii.syms >downcase.fst <<EOF

0 0 ! !

0 0 A a

0 0 B b

0 0 a a

0 0 b b

0

EOF

OpenFst Part II. Applications Example Applications 9

Downcasing Text - II

This transducer can be applied to the Mars men automaton from the previous

example with:

$ fstproject Marsman.fst | fstcompose - downcase.fst |

fstproject --project output >marsman.fst

0 1
m:m

2
a:a

3
r:r

4
s:s

5
< s p a c e > : < s p a c e >

6
m:m

7
a:a

8
n :n !:!

Advantages:

• Downcases any automaton - e.g. the lexicon from the previous example:

$ fstinvert lexicon opt.fst | fstcompose - downcase.fst |

fstinvert >lexicon opt downcase.fst

• Inverse FST can be used to restore case – next example.

OpenFst Part II. Applications Example Applications 10

Case Restoration - I

• Create a transducer that attempts to restore the case of downcased input.

• No error-free way to do this, in general.

• Use 5-gram LM of The War of the Worlds corpus in OpenFst format:

$ fstrandgen --select=log prob wotw lm.fst|

fstprint --isymbols=wotw.syms --osymbols=wotw.syms | cut -f3 | tr ’\n’ ’ ’

The desolating cry <epsilon> worked <epsilon> upon my mind once I \

<epsilon> <epsilon> slept <espilon> little

Epsilons are used to represent backoff transitions (as will be described in the

ASR section).

OpenFst Part II. Applications Example Applications 11

Case Restoration - II

Given this language model and using the lexicon and downcasing transducers

from the previous examples, a case restoration solution is:

$ fstcompose lexicon opt.fst wotw lm.fst| fstarcsort --sort type=ilabel >wotw.fst

$ fstinvert downcase.fst | fstcompose - wotw.fst >case restore.fst

• wotw.fst: maps from letters to tokens following the probability distribution

of the language model.

• case restore.fst: as above, but uses only downcased letters.

Case prediction can then be performed with:

$ fstcompose marsman.fst case restore.fst | fstshortestpath |

fstproject --project output | fstrmepsilon | fsttopsort >prediction.fst

0 1
Mars:Mars/9.62

2 /2 .64
man :man /7 .28

OpenFst Part II. Applications Example Applications 12

Case Restoration - III

Unfortunately, the first composition above is extremely expensive since the out-

put labels in the lexicon are pushed back in determinization, delaying match-

ing.

One solution: use the input to restrict the composition chain:

$ fstcompose downcase.fst marsman.fst | fstinvert |

fstcompose - lexicon opt.fst | fstcompose - wotw lm.fst| fstshortestpath |

fstproject -project output | fstrmepsilon | fsttopsort >prediction.fst

Works but has the disadvantages that it requires:

• a multiple transduction cascade for application

• inputs be strings or otherwise small

OpenFst Part II. Applications Example Applications 13

Case Restoration IV

A second solution:

• Replace transducer determinization and minimization of the lexicon with

automata determinization and minimization

• Apply transducer determinization and minimization to the result of com-

position with the language model.

$ fstencode --encode labels lexicon.fst enc.dat | fstdeterminize |

fstminimize | fstencode --decode - enc.dat >lexicon compact.fst

$ fstcompose lexicon compact.fst wotw lm.fst| fstdeterminize | fstminimize >wotw.fst

$ fstinvert downcase.fst | fstcompose - wotw.fst >case restore.fst

A natural solution but has the disadvantage that the (much larger) transducer

determinization and minimization steps are expensive.

OpenFst Part II. Applications Example Applications 14

Case Restoration V

A third solution: use an FST representation that allows lookahead matching

to avoid composition matching delays:

$ fstconvert --fst type=olabel lookahead --save relabel opairs=relabel.prs \

lexicon opt.fst >lexicon lookahead.fst

Relabels the language model input (required by lookahead implementation)

$ fstrelabel --relabel ipairs=relabel.prs wotw lm.fst|

fstarcsort --sort type=ilabel >wotw relabel.lm

This can now be used efficiently with the original proposed solution:

$ fstcompose lexicon lookahead.fst wotw relabel.lm >wotw.fst

$ fstinvert downcase.fst | fstcompose - wotw.fst >case restore.fst

OpenFst Part II. Applications Example Applications 15

Edit Distance - I

• Predictions (as in the previous example) may not always be correct

• Error can be measured when the reference answers available

• To measure the error, align the hypothesis with the reference and define:

edit distance = #substitutions + #deletions + #insertions

error rate =
edit distance

#reference symbols

Given reference ref.fst, (unweighted) hypothesis, hyp.fst, and an edit trans-

ducer, edit.fst, the edit distance can be computed with:

$ fstcompose ref.fst edit.fst | fstcompose - hyp.fst |

Returns shortest distance from final states to the initial (first) state

$ fstshortdistance --reverse | head -1

OpenFst Part II. Applications Example Applications 16

Edit Distance - II

The edit transducer, edit.fst, for two letters a and b, is the flower transducer:

0

a:a
b:b

a:b/1
b:a/1

a :<eps i lon>/1
b:<eps i lon>/1
<eps i lon>:a /1
<eps i lon>:b /1

• Counts a substitution, insertion, or deletion as 1 edit

• Counts a match as zero edits.

• Generalizations of string-to-string Levenshtein distance:

– Allow arbritrary weights per pairs.

– Limit the number of contiguous insertions or deletions

– Specify merge, split, or transposition weights

– Use multiple hypothesis set (lattice) input: oracle edit distance

OpenFst Part II. Applications Example Applications 17

Edit Distance – III

The edit transducer has:

• 9215 transitions for |V | = 95 letters (ascii.syms)

• 50,438,403 transitions for |V | = 7101 words (word.syms)

Levenshtein-case solution: factor the edit transducer as:

0

a:a
b:b

a : < s u b > / 1
b : < s u b > / 1
a : < d e l > / 1
b : < d e l > / 1

< e p s i l o n > : < i n s > / 1
< e p s i l o n > : < i n s > / 1

0

a :a
b:b

< s u b > : b / 1
< s u b > : a / 1

< d e l > : < e p s i l o n > / 1
< d e l > : < e p s i l o n > / 1

< i n s > : a / 1
< i n s > : b / 1

edit1.fst edit2.fst

• New symbols <sub>, , and <ins>

• Factors compose into the original edit transducer

• Original edit transducer: (|V | + 1)2 − 1 transitions

• Factored transducers: 4|V | transitions

OpenFst Part II. Applications Example Applications 18

Edit Transducer - IV

Given these factors, compute:

$ fstcompose ref.fst edit1.fst >ref edit.fst

$ fstcompose edit2.hyp hyp.fst >hyp edit.fst

$ fstcompose ref edit.fst hyp edit.fst | fstshortdistance --reverse | head -1

Search space is quadratic in the input length, so if large:

• Use inadmissable pruning

• Limit the number of contiguous insertions or deletions

With more general, unfactorable, edit transducers, use:

• specialized edit transducer representation

• three-way composition

• specialized composition filter

OpenFst Part II. Applications Example Applications 19

ASR Applications

OpenFst Part II. Applications ASR Applications 20

ASR Problem Definition

Given an utterance, find its most likely written transcription.

Fundamental ideas:

• Utterances are built from sequences of units

• Acoustic correlates of a unit are affected by surrounding units

• Units combine into higher level units — phones → syllables → words

• Relationships between levels can be modeled by weighted graphs

• Recognition: find the best path in a suitable product graph

OpenFst Part II. Applications ASR Applications 21

Maximum-Likelihood Decoding

Overall analysis:

• Acoustic observations: parameter vectors derived by local spectral analysis of

the speech waveform at regular (e.g. 10msec) intervals

• Observation sequence o

• Transcriptions w

• Probability P (o|w) of observing o when w is uttered

• Maximum-likelihood decoding:

ŵ = argmax
w

P (w|o) = argmax
w

P (o|w)P (w)
P (o)

= argmax
w

P (o|w)
| {z }

channel

model

P (w)
| {z }

language

model

OpenFst Part II. Applications ASR Applications 22

Generative Models of Speech

Typical decomposition of P (o|w) into conditionally-independent mappings between

levels:

• Acoustic model P (o|p) : phone sequences → observation sequences. Detailed

model:

– P (o|d) : distributions → observation vectors — symbolic → quantitative

– P (d|m) : context-dependent phone models → distribution sequences

– P (m|p) : phone sequences → model sequences

• Pronunciation model P (p|w) : word sequences → phone sequences

• Language model P (w) : word sequences

OpenFst Part II. Applications ASR Applications 23

Speech Recognition Problems

• Modeling: how to describe accurately the relations between levels ⇒ mod-

eling errors

• Search: how to find the best interpretation of the observations ac-

cording to the given models ⇒ search errors

This talk will emphasize the latter topic.

OpenFst Part II. Applications ASR Applications 24

Simple ASR Search I – Network Representation

• Grammar: word network

0	 1	
end/0.7

user/0.3
2	

user/0.3

end/0.6

data/0.1
3	/0

experience/1

• Lexicon: mapping from word label to phonetic network

“data”: 0	 1	
d/1

2	
ey/0.4

ae/0.6
3	

dx/0.8

t/0.2
4	/0

ax/1

• Phone model: mapping from phone label to HMM network

“ae”: 0	

ae1

1	
ae1

ae2

2	
ae2

ae3

3	
ae3

OpenFst Part II. Applications ASR Applications 25

Simple ASR Search II – Network Substitution and Viterbi Search

• Above networks are recursively substituted, either offline or dynamically

during recognition, to form a single large network.

• The combined network is time-synchronously (Viterbi) matched to the

incoming speech and searched for the best (lowest total cost) matching

path which is returned as the hypothesized word string. For improved

speed, partial paths that score less than the best path so far (outside the

so-called beam) can be pruned, but this potentially creates search errors.

OpenFst Part II. Applications ASR Applications 26

Problems with Simple ASR Search

The problems with this simple approach for large vocabulary speech recogni-

tion include:

1. Context-Dependent Modeling: Context-dependent models are awkward to

represent by network substitution. (Solution: finite-state transducers and

composition.)

2. Network Redundancy and Size: Networks can be highly redundant and

very large. (Solution: finite-state optimizations – determinization and

minimization.)

3. Network Weight Distribution: The distribution of the grammar and pro-

nunciation weights strongly affect pruning efficiency. What is the optimal

way to distribute them? (Solution: weight pushing)

OpenFst Part II. Applications ASR Applications 27

Context-dependent Recognition Transducer

H C L G

distributions context−dependent
phones

phones words word
sequences

• H: HMM transducer, closure of the union of all HMMs used in acoustic modeling,

• C: context-dependency transducer mapping context-dependent phones to phones,

• L: pronunciation dictionary transducer mapping phonemic transcriptions to

word sequences,

• G: language model weighted automaton.

H ◦ C ◦ L ◦ G: mapping from sequences of distribution names to word sequences.

OpenFst Part II. Applications ASR Applications 28

Grammar Acceptor

0 1
using:using/1

2data:data/0.66

3

intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1
5/0

better:better/0.7

worse:worse/0.3

OpenFst Part II. Applications ASR Applications 29

N-Gram Language Models

• Want to estimate the probability of a sentence w1, w2, w3, w4, . . .

• By the chain rule of probability,

Pr(w1, w2, . . .) = Pr(w1)×Pr(w2|w1)×Pr(w3|w1, w2)×Pr(w4|w1, w2, w3)×

· · ·

• Bigram approximation, plus conventional handling of first word:

Pr(w1, w2, . . .) ≈ Pr(w1 | $)×Pr(w2 |w1)×Pr(w3 |w2)×Pr(w4 |w3)× · · ·

• Has a straightforward representation as an FST, where states encode con-

ditioning histories.

• Backoff models can be represented inexactly with epsilon transitions or

exactly with failure transitions.

OpenFst Part II. Applications ASR Applications 30

Bigram Grammar

OpenFst Part II. Applications ASR Applications 31

Pronunciation Lexicon Transducer

0

1d:data/1

5

d:dew/1

2 ey: ε /0.5

 ae: ε /0.5

6/0
 uw: ε /1

3
 t: ε /0.3

 dx: ε /0.7
4/0

 ax: ε /1

OpenFst Part II. Applications ASR Applications 32

Context-Dependent Triphone Transducer

#,* x,#

x:x/#_#

x,x

x:x/#_x

x,y

x:x/#_y

y,#

y:y/#_#

y,x

y:y/#_x

y,y

y:y/#_y x:x/x_#

x:x/x_x

x:x/x_y

y:y/x_#

y:y/x_x

y:y/x_y

x:x/y_#
x:x/y_x

x:x/y_y

y:y/y_#

y:y/y_x
y:y/y_y

OpenFst Part II. Applications ASR Applications 33

Deterministic Context-Dependent Triphone Transducer

ε,ε

ε,x

x:ε

ε,y

y:ε

x,ε
$:x/ε_ε

x,x

x:x/ε_x

x,y
y:x/ε_y

y,ε

$:y/ε_ε

y,x

x:y/ε_y

y,y
y:y/ε_y

$:x/x_ε

x:x/x_x
y:x/x_y

$:y/x_ε

x:y/x_x

y:y/x_y

$:x/y_εx:x/y_x

y:x/y_y

$:y/y_ε

x:y/y_x

y:y/y_y

OpenFst Part II. Applications ASR Applications 34

Recognition Transducer Construction I: Disambiguation

1. L → L̃, auxiliary symbols used to make L◦G determinizable (homophones,

transduction’s unbounded delay):

r eh d #0 read

r eh d #1 red

2. C → C̃, self-loops used for further determinizations at the context-dependent

level,

3. H → H̃, self-loops at initial state, auxiliary context-dependent symbols

mapped to new distinct distribution names.

OpenFst Part II. Applications ASR Applications 35

Recognition Transducer Construction II: Combination/Optimization

1. Composition:

N = πǫ(H̃ ◦ C̃ ◦ L̃ ◦ G)

2. Determinization:

N = πǫ(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦ G))))

3. Minimization:

N = πǫ(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦ G)))))

4. Weight Pushing:

N = push(πǫ(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦ G))))))

OpenFst Part II. Applications ASR Applications 36

Recognition Transducer Construction Example I

0 1

jim/1.386

jill/0.693

bill/1.386
2/0

read/0.400

wrote/1.832

fled/1.771

G

OpenFst Part II. Applications ASR Applications 37

Recognition Transducer Construction Example II

0

14jh:jim

10jh:jill

1b:bill

18

r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19
eh:<eps>

23
iy:<eps>

27
ow:<eps>

6
l:<eps>

3
l:<eps>

4

#0:<eps>

<eps>:<eps>

7
eh:<eps>

8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13

#0:<eps>

<eps>:<eps>

16
m:<eps>

17

#0:<eps>

<eps>:<eps>

20
d:<eps>

21

#0:<eps>

<eps>:<eps>

24
d:<eps>

25

#0:<eps>

<eps>:<eps>

28
t:<eps>

29#0:<eps>

<eps>:<eps>

30
<eps>:<eps>

L̃

OpenFst Part II. Applications ASR Applications 38

Recognition Transducer Construction Example III

0

2jh:jim/1.386

19
jh:jill/0.693

22

b:bill/1.386

3
ih:<eps>/0

20
ih:<eps>/0

23
ih:<eps>/0

1/0

4
m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12

r:wrote/1.832

15

f:fled/1.771

7
eh:<eps>/0

10iy:<eps>/0

13
ow:<eps>/0

16
l:<eps>/0

8
d:<eps>/0

#0:<eps>/0

11
d:<eps>/0

#0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17
eh:<eps>/0

18
d:<eps>/0

#0:<eps>/0
21

l:<eps>/0 #0:<eps>/0

24
l:<eps>/0

#0:<eps>/0

L̃ ◦ G

OpenFst Part II. Applications ASR Applications 39

Recognition Transducer Construction Example IV

0
2b:bill/1.386

3
jh:<eps>/0.693

4
ih:<eps>/0

5
ih:<eps>/0 1/0

6
l:<eps>/0

7
l:jill/0

8

m:jim/0.693
9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12
l:<eps>/0

13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17
d:<eps>/0

18
d:<eps>/0

19
t:<eps>/0

20
d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

det(L̃ ◦ G)

OpenFst Part II. Applications ASR Applications 40

Recognition Transducer Construction Example V

0

2b:bill/0.693

3
jh:<eps>/0

4
ih:<eps>/0

13
ih:<eps>/0 1/05

l:<eps>/0

l:jill/0

m:jim/0.693
6

#0:<eps>/0

7f:fled/1.371

8
r:<eps>/0

9
l:<eps>/0

10
iy:read/0

eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11

d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

min(det(L̃ ◦ G))

OpenFst Part II. Applications ASR Applications 41

Recognition Transducer Construction Example VI

0

2b:bill/1.386

3
jh:<eps>/0.287

4
ih:<eps>/0

11
ih:<eps>/0 1/05

l:<eps>/0

l:jill/0.405

m:jim/1.098

6f:fled/2.284

7
r:<eps>/0.107

8
l:<eps>/0

9
eh:read/0.805

iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

push(πǫ(min(det(L̃ ◦ G))))

OpenFst Part II. Applications ASR Applications 42

Recognition Transducer Construction – Alternatives

• C ◦ det(L ◦ G)

Grammar G compiled into optimized transducer offline, cannot exchange

it at runtime.

• det(C ◦ L) ◦ G

Outermost composition with algorithm of Part 1 badly behaved - many

no-coaccessible paths created.

� Solution: generalized composition (with lookahead).

OpenFst Part II. Applications ASR Applications 43

Alternative constructions – Illustration

0

1

r:red

2r:read

3r:reed

4

r:road

5

r:rode

6

eh:ε

eh:ε
iy:ε

iy:ε
ao:ε

ao:ε

7d:ε 0 1r:ε

2
eh:ε

3iy:ε

5

ao:ε
4

d:read

d:red

d:read
d:reed

d:road

d:rode

0

1red/0.6

2

read/0.4

L det(L) G

0,0

1,1r:red/0.6

2,2

r:read/0.4

6,1eh:ε

6,2
eh:ε
iy:ε

7,1d:ε

7,2d:ε

0 1,0r:ε

2,0
eh:ε

3,0iy:ε

5,0
ao:ε

4,2

d:read/0.4

4,1d:red/0.6

d:read/0.4

L ◦ G det(L) ◦ G

OpenFst Part II. Applications ASR Applications 44

1st-Pass Recognition Transducers – 40K NAB Task

transducer states transitions

G 1,339,664 3,926,010

L ◦ G 8,606,729 11,406,721

det(L ◦ G) 7,082,404 9,836,629

C ◦ det(L ◦ G)) 7,273,035 10,201,269

det(H ◦ C ◦ L ◦ G) 18,317,359 21,237,992

OpenFst Part II. Applications ASR Applications 45

1st-Pass Recognition Speed - 40K NAB Eval ’95

transducer x real-time

C ◦ L ◦ G 12.5

C ◦ det(L ◦ G) 1.2

det(H ◦ C ◦ L ◦ G) 1.0

Recognition speed of the first-pass transducers in the NAB 40, 000-word vocabulary

task at 83% word accuracy.

OpenFst Part II. Applications ASR Applications 46

2nd-Pass Recognition Speed - 160K NAB Eval ’95

transducer x real-time

C ◦ L ◦ G .18

C ◦ det(L ◦ G) .13

C ◦ push(min(det(L ◦ G))) .02

Recognition speed of the second-pass transducers in the NAB 160, 000-word vocabu-

lary task at 88%.

OpenFst Part II. Applications ASR Applications 47

Generalized Composition with Lookahead

• Goal: Efficient (static or dynamic) computation of det(C ◦ L) ◦ G

• Algorithm: Generalizes composition by generalizing the notion of compo-

sition filter. More than just epsilon filtering.

• Lookahead filters: Use some information about the input transducers to

prevent the creation of non-coaccessible states in composition

• Label-reachability filter:

0 1r:ε

2
eh:ε

3iy:ε

5

ao:ε
4

d:read

d:red

d:read
d:reed

d:road

d:rode

0

1red/0.6

2

read/0.4

0,0 1,0r:ε

2,0
eh:ε

3,0iy:ε

ao:ε

4,2

d:read/0.4

4,1d:red/0.6

d:read/0.4

OpenFst Part II. Applications ASR Applications 48

Recognition Experiments

Broadcast News Spoken Query Task

Acoustic Model

• Trained on 96 and 97 DARPA Hub4 AM training

sets.

• PLP cepstra, LDA analysis, STC

• Triphonic, 8k tied states, 16 components per

state

• Speaker adapted (both VTLN + CMLLR)

• Trained on > 1000hrs of voice search queries

• PLP cepstra, LDA analysis, STC

• Triphonic, 4k tied states, 4 - 128 components

per state

• Speaker independent

Language Model

• 1996 Hub4 CSR LM training sets

• 4-gram language model pruned to 8M n-grams

• Trained on > 1B words of google.com and voice

search queries

• 1 million word vocabulary

• Katz back-off model, pruned to various sizes

OpenFst Part II. Applications ASR Applications 49

Recognition Experiments

Precomputation before recognition Broadcast News Spoken Query Task

Construction method Time RAM Result Time RAM Result

Static

(1) with standard composition 7 min 5.3G 0.5G 10.5 min 11.2G 1.4G

(2) with generalized composition 2.5 min 2.9G 0.5G 4 min 5.3G 1.4G

Dynamic

(2) with generalized composition none none 0.2G none none 0.5G

Broadcast News Spoken Query Task

OpenFst Part II. Applications ASR Applications 50

Recognition Experiments

• A small part of the recognition transducer is visited during recognition:

Spoken Query Task Static Number of states in recognition transducer 25.4M

Dynamic Number of states visited per second 8K

• Very large language models can be used in first-pass:

1e+06 5e+06 1e+07 5e+07 1e+08 5e+08 1e+09

17
18

19
20

21

of N−Grams

W
or

d
E

rr
or

 R
at

e

Spoken Query Task

Word error rate as function of LM size

(with Ciprian Chelba and Boulos Harb)

OpenFst Part II. Applications ASR Applications 51

Conclusion

• More information available at http://www.openfst.org:

– full documentation,

– slides from this presentation and previous tutorials, and

– links to relevant papers and books.

• If you have questions later,

– post your questions in our forum at http://forum.openfst.org, or

– contact us at {allauzen,riley}@google.com

OpenFst Part II. Applications ASR Applications 52

