
A Pushdown Transducer Extension for the

OpenFst Library

Cyril Allauzen and Michael Riley

Google Research, 76 Ninth Avenue, New York, NY 10011, USA
{allauzen,riley}@google.com

Abstract. Pushdown automata are devices that can efficiently repre-
sent context-free languages, have natural weighted versions, and combine
naturally with finite automata. We describe a pushdown transducer ex-
tension to OpenFst, a weighted finite-state transducer library. We present
several weighted pushdown algorithms, some with clear finite-state ana-
logues, describe their library usage and give some applications of these
methods to recognition, parsing and translation.

1 Introduction

OpenFst is an open-source C++ software library for creating, combining, search-
ing and optimizing finite-state transducers (FSTs) [?]. Weighted FSTs have
many applications in speech and language processing, computational biology
and other areas and the availability of flexible, large-scale algorithms libraries
allows rapid experimentation and development [?]. However, there are problems
that are not well-represented by finite automata such as aspects of natural lan-
guage parsing or translation. In particular, a context-free representation may be
better suited either because the language considered is not regular or is more
compactly represented in a recursive manner.

In these cases, a common approach is to use a weighted context-free grammar
as the representation. However, weighted pushdown automata offer an attractive
alternative. As automata, they are more closely tied to computation and can
share and mix with finite automata in a natural way [?]. Our goal here is to
present several weighted pushdown algorithms, some with clear finite-state ana-
logues, to describe their realization in a pushdown transducer extension to the
OpenFst library and to give some applications of these methods and the library.

2 Definitions

Informally, pushdown transducers are finite-state transducers that have been
augmented with a stack. Typically this is done by adding a stack alphabet and
labeling each transition with a stack operation (a stack symbol to be pushed
onto, popped or read from the stack) in additon to the usual input and output
labels [?,?] and weight [?,?]. Our equivalent representation allows a transition to
be labeled by a stack operation or regular input/output symbols but not both.

0

1a

2
ε
(

3)
b

0
1

a

2

ε

(
ε

3

)
ε
b

0

1
(

3

ε

2
a

4(

)

5
b

)

0,ε

1,(
ε

3,ε

ε

2,(
a

4,(ε

ε

5,(
b

ε

(a) (b) (c) (d)

Fig. 1. PDA Examples: (a) Non-rational PDA A1 accepting {anbn|n ∈ N}. (b) Ra-
tional (but not bounded-stack) PDA A2 accepting a∗b∗. (c) Bounded-stack PDA A3

accepting a∗b∗ and (d) its expansion A4 as an FSA.

Stack operations are represented by pairs of open and close parentheses (pushing
a symbol on and popping it from the stack). The advantage of this representation
is that it is identical to the finite-state transducer representation except that
certain symbols (the parentheses) have special semantics. As such, several finite-
state algorithms either immediately generalize to this PDT representation or do
so with minimal changes.

2.1 Dyck Languages

A (restricted) Dyck language consists of “well-formed” or “balanced” strings over
a finite number of pairs of parentheses. Thus the string ([() ()] { } []) () is
in the Dyck language over three pairs of parentheses (following [?]).

More formally, let A and A be two finite alphabets such that there exists
a bijection f from A to A. Intuitively, f maps an opening parenthesis to its
corresponding closing parenthesis. Let ā denote f(a) if a∈A and f−1(a) if a∈A.

The Dyck language DA over the alphabet Â=A∪A is then the language defined
by the following context-free grammar: S → ǫ, S → SS and S → aSā for all
a ∈ A. We define the mapping cA : Â∗ → Â∗ as follows. cA(x) is the string
obtained by iteratively deleting from x all factors of the form aā with a ∈ A.
Observe that DA=c−1A (ǫ).

Let A and B be two finite alphabets such that B ⊆ A, we define the mapping
rB : A∗ → B∗ by rB(x1 . . . xn) = y1 . . . yn with yi = xi if xi ∈ B and yi = ǫ
otherwise.

2.2 Pushdown Automata and Transducers

Formally, a weighted pushdown transducer (PDT) T over the tropical semiring
(R ∪ {∞},min,+,∞, 0) is a 9-tuple (Σ,∆,Π,Π,Q,E, I, F, ρ) where Σ and ∆
are the finite input and output alphabets, Π and Π are the finite open and close
parenthesis alphabets, Q is a finite set of states, I ∈Q the initial state, F ⊆ Q
the set of final states, E ⊆ Q× (Σ ∪ Π̂ ∪ {ǫ})× (∆∪ Π̂ ∪ {ǫ})× (R∪ {∞})×Q
a finite set of transitions, and ρ : F → R ∪ {∞} the final weight function. Let

e=(p[e], i[e], o[e], w[e], n[e]) denote a transition in E we require that if i[e]∈ Π̂

or o[e]∈Π̂, then i[e]=o[e]. We define the size of T as |T |= |Q|+|E|.

A path π is a sequence of transitions π = e1 . . . en such that n[ei] = p[ei+1]
for 1 ≤ i < n. We then define p[π] = p[e1], n[π] = n[en], i[π] = i[e1] · · · i[en],
o[π]=o[e1] · · · o[en] and w[π]=w[e1] + . . .+ w[en].

A path π is accepting if p[π] = I and n[π] ∈ F . A path π is balanced if
r
Π̂
(i[π]) ∈DΠ . A balanced path π accepts the pair (x, y) ∈ Σ∗ × ∆∗ if it is a

balanced accepting path such that rΣ(i[π])=x and r∆(o[π])=y.
The weight associated by T to a pair of strings (x, y)∈Σ∗ ×∆∗ is

T (x, y)= min
π∈P (x,y)

w[π]+ρ(n[π])

where P (x, y) denotes the set of balanced paths accepting (x, y). A weighted
transduction is recognizable by a weighted pushdown transducer iff it is algebraic
[?] or equivalently iff it is recognizable by a weighted simple syntax-directed
translation [?,?].

A weighted pushdown automaton (PDA) is a pushdown transducer where
i[e] = o[e] for all transition e ∈ E. A weighted language is recognizable by a
weighted pushdown automaton iff it is context-free [?,?].

A pushdown transducer T has bounded stack if there exists K ∈ N such that
for any path π from I such that cΠ(r

Π̂
(i[π])) ∈ Π∗:

|cΠ(r
Π̂
(i[π]))| ≤ K. (1)

If T has bounded stack, then it represents a rational transduction (see Sec-
tion 4.1). Figure 1a-c gives examples of non-rational, rational and bounded-stack
PDAs.

A pushdown transducer is deterministic if at any state with at least two
outgoing transitions the input labels of the outgoing transitions are distinct and
are either all input symbols (in Σ) or all close parentheses (in Π).

A weighted finite-state transducer or automaton (FST or FSA) can be viewed
as a PDT or PDA where the open and close parentheses alphabets are empty;
see [?] for a stand-alone definition.

3 Implementation

The benefit of this definition of PDTs is that a PDT T can be represented as
a pair of a FST specification, with input alphabet Σ ∪ Π̂ and output alphabet
∆ ∪ Π̂, and a parentheses mapping f : Π → Π, a 7→ a. This allows us to fully
leverage the OpenFst library [?] for representing and manipulating the FST
specifications of PDTs.

The PDA A1 given in Figure 1a can be generated from the three text files
given Figure 2. The pda.txt file is the textual description of the FSA specification
of A1 in the OpenFst format. The symbols file maps each symbol to an integer
value used for the internal memory representation. Finally, the parens file de-
scribes the pair of open and close parentheses. The fstcompile binary command
can be used to generate a binary file for the FSA specification of A1:

fstcompile --acceptor --isymbols=symbols pda.txt > pda.fst

pda.txt symbols parens

0 1 a eps 0 3 4
0 2 eps a 1
1 0 (b 2
2 3) (3
2) 4
3 2 b

Fig. 2. Text files representing the PDA from Figure 1a.

The pair of files (pda.fst, parens) is then the file representation of the PDA
for the purposes of the library. For instance, the reverse of A1 can then be
computed by invoking the following command:

pdtreverse --pdt parentheses=parens pda.fst > reverse-pda.fst

Using the C++ interface, a PDT is similarly represented by a pair consisting
of an object of type StdFst and a vector<pair<int, int> > object representing
the set of open and close parenthesis pairs. The following C++ code is equivalent
to the command given above:

StdFst *pda = StdFst::Read("pda.fst");

vector<pair<int, int> > parens(1, make_pair(3,4));

StdVectorFst reverse_pda;

Reverse(*pda, parens, &reverse_pda);

Table 1 shows the operations available in the PDT library extension [?].
The shared file and memory representations for FSTs and PDTs allows some
operations from the OpenFst library, such as Union or Invert for instance, to be
applied to PDTs unmodified. Other operations can be implemented with minimal
work by leveraging the corresponding FST operation. For instance, PDT reversal
can be implemented by first calling the Reverse operation of OpenFst followed
by replacing every occurence of a parenthesis a ∈ Π̂ by its matching parenthesis
a in the resulting machine.

4 Algorithms

In this section, we present PDT algorithms that are not trivially derived from
FST analogues. The algorithms that we chose were motivated by analogy to
the finite automata or context-free grammar case, by their applications (see
Section 5), and by their tractability.

4.1 Expansion

Given a bounded-stack PDT T , the expansion of T is the FST T ′ equivalent to
T defined as follows.

A state in T ′ is a pair (q, z) where q is a state in T and z∈Π∗. A transition
(q, a, b, w, q′) in T results in a transition ((q, z), a′, b′, w, (q′, z′)) in T ′ only when
one of the following conditions hold: (a) a∈Σ ∪ {ǫ}, z′=z, a′=a and b′=b, (b)

Table 1. Algorithms for manipulating pushdown transducers and the corresponding
binary commands.

Operation Algorithm Section Command

Union FST alg. fstunion

Concatenation FST alg.⋆ fstconcat

Closure FST alg.⋆ fstclosure

Reversal trivial changes to FST alg. pdtreverse

Inversion FST alg. fstinvert

Projection FST alg. fstproject

Expansion PDT-specific alg.⋄ 4.1 pdtexpand

Replacement PDT-specific alg. 4.5 pdtreplace

Composition non-trivial changes to FST alg. 4.2 pdtcompose

Determinization FST alg. useful† fstdeterminize

Epsilon removal FST alg. fstrmepsilon

Minimization FST alg. useful‡ fstminimize

Shortest distance PDT-specific alg.⋄ 4.3 N/A
Shortest path PDT-specific alg.⋄ 4.3 pdtshortestpath

Pruned expansion PDT-specific alg.⋄ 4.4 pdtexpand

Pruning PDT-specific alg. required 4.6 N/A
Connection PDT-specific alg. required 4.6 N/A
⋆Assumes the presence of distinguished initial and final parentheses.
⋄Requires bounded-stack input.
†Reduces the redundancy but does not produce a deterministic PDT.
‡Reduces the size but does not perform PDT minimization.

a∈Π, z′=za, a′=ǫ and b′=ǫ, or (c) a∈Π, z=z′a, a′=ǫ and b′=ǫ. The initial
state of T ′ is I ′=(I, ǫ). A state (q, z) in T ′ is final iff q is final in T and z= ǫ.
We have ρ′((q, ǫ))=ρ(q). The set of states of T ′ is the set of pairs (q, z) that can
be reached from an initial state by transitions defined as above. The condition
that T has bounded stack ensures that this set is finite (since it implies that for
any such pair (q, z), |z| ≤ K).

The complexity of the algorithm is linear in O(|T ′|) = O(e|T |). Figure 1d
shows the result of the algorithm when applied to the PDA of Figure 1c.

4.2 Composition

The class of weighted pushdown transducers is closed under composition with
weighted finite-state transducers [?,?]. Considering a pair (T1, T2) where one
element is an FST and the other element a PDT and such that T1 has input and
output alphabets Σ and ∆ and T2 has input and output alphabets ∆ and Γ ,
then there exists a PDT T1◦T2, the composition of T1 and T2, such that for all
(x, y)∈Σ∗ × Γ ∗: (T1◦T2)(x, y)=minz∈∆∗(T1(x, z)+T2(z, y)). We assume in the
following that T2 is an FST. We also assume that T2 has no input-ǫ transitions.
When T2 has input-ǫ transitions, an epsilon filter [?,?] generalized to handle
parentheses can be used.

ShortestDistance(T)

1 for each q ∈ Q and a ∈ Π do

2 B[q, a]← ∅
3 GetDistance(T, I)
4 return d[f, I]

Relax(q, s, w,S)

1 if d[q, s] > w then

2 d[q, s]← w
3 if q 6∈ S then

4 Enqueue(S, q)

GetDistance(T, s)

1 for each q ∈ Q do

2 d[q, s]←∞
3 d[s, s]← 0
4 Ss ← s
5 while Ss 6=∅ do

6 q ← Head(Ss)
7 Dequeue(Ss)
8 for each e ∈ E[q] do
9 if i[e] ∈ Σ ∪ {ǫ} then ⊲ i[e] is a regular symbol

10 Relax(n[e], s, d[q, s] + w[e],Ss)
11 elseif i[e] ∈ Π then ⊲ i[e] is a close parenthesis

12 B[s, i[e]]← B[s, i[e]] ∪ {e}
13 elseif i[e] ∈ Π then ⊲ i[e] is an open parenthesis
14 if d[n[e], n[e]] is undefined then

15 GetDistance(T, n[e])
16 for each e′ ∈ B[n[e], i[e]] do
17 w ← d[q, s] + w[e] + d[p[e′], n[e]] + w[e′]
18 Relax(n[e′], s, w,Ss)

Fig. 3. PDT shortest distance algorithm. We assume that F = {f} and ρ(f) = 0 to
simplify the presentation

A state in T =T1◦T2 is a pair (q1, q2) where q1 is a state of T1 and q2 a state
of T2. The initial state is I =(I1, I2). Given a transition e1 =(q1, a, b, w1, q

′
1) in

T1, transitions out of (q1, q2) in T are obtained using the following rules.
If b ∈ ∆, then e1 can be matched with a transition (q2, b, c, w2, q

′
2) in T2

resulting a transition ((q1, q2), a, c, w1+w2, (q
′
1, q
′
2)) in T . If b = ǫ, then e1 is

handled by staying in q2 resulting in a transition ((q1, q2), a, ǫ, w1, (q
′
1, q2)). Fi-

nally, if b=a ∈ Π̂, e1 is also handled by staying in q2, resulting in a transition
((q1, q2), a, a, w1, (q

′
1, q2)) in T .

A state (q1, q2) in T is final when both q1 and q2 are final, and then ρ((q1, q2))=
ρ1(q1)+ρ2(q2). The complexity of the algorithm is O(|T1| |T2|) in the worst case.

4.3 Shortest Distance and Shortest Path

A shortest path in a PDT T is a balanced accepting path with minimal weight
and the shortest distance in T is the weight of such a path. We show that when
T has bounded stack, the shortest distance and shortest path can be computed
in O(|T |3 log |T |) time (assuming T has no negative weights) and O(|T |2) space.

Given a state s in T with at least one incoming open parenthesis transition,
we denote by Cs the set of states that can be reached from s by a balanced path.
If s has several incoming open parenthesis transitions, a naive implementation
might lead to the states in Cs being visited up to exponentially many times. The
basic idea of the algorithm is to memoize the shortest distance from s to states
in Cs. The pseudo-code is given in Figure 3.

GetDistance(T, s) starts a new instance of the shortest-distance algorithm
from s using the queue Ss, initially containing s. While the queue is not empty,
a state is dequeued and its outgoing transitions examined (line 5-9). Transitions
labeled by non-parenthesis are treated as in Mohri [?] (line 9-10). When the

considered transition e is labeled by a close parenthesis, all balancing incoming
open parentheses in s labeled by i[e] are remembered by adding e to B[s, i[e]]
(line 11-12). Finally, when e is labeled with an open parenthesis, if its destination
has not already been visited, a new instance is started from n[e] (line 14-15).
The destination states of all transitions balancing e are then relaxed (line 16-18).

The space complexity of the algorithm is quadratic for two reasons. First,
the number of non-infinite d[q, s] is |Q|2. Second, the space required for storing
B is at most in O(|E|2) since for each open parenthesis transition e, the size of
|B[n[e], i[e]]| is O(|E|) in the worst case. This last observation also implies that
the accumulated number of transitions examined at line 16 is in O(N |Q| |E|2)
in the worst case, where N denotes the maximal number of times a state is
inserted in the queue for a given call of GetDistance. Assuming the cost of
a queue operation is Γ (n) for a queue containing n elements, the worst-case
time complexity of the algorithm can then be expressed as O(N |T |3 Γ (|T |)).
When T contains no negative weights, using a shortest-first queue discipline
leads to a time complexity in O(|T |3 log |T |). When all the Cs’s are acyclic,
using a topological order queue discipline leads to a O(|T |3) time complexity.

When T has been obtained by converting an RTN into a PDA (see Sec-
tion 4.5), the polynomial dependency in |T | becomes a linear dependency both
for the time and space complexities. Indeed, for each q in T , there exists a unique
s such that d[q, s] is non-infinite. Moreover, for each open parenthesis transition
e, there exists a unique close parenthesis transition e′ such that e′∈B[n[e], i[e]].
When each component of the RTN is acyclic, the complexity of the algorithm is
hence in O(|T |) in time and space.

Similarly, when T = T1 ◦T2 and T1 was obtained by converting an RTN into
a PDA, the complexity becomes O(N |T1||T2|

3 Γ (|T |)) in time and O(|T1||T2|
2)

in space. This follows since for each (q1, q2) there exists a unique s1 such that
d[(q1, q2), (s1, s2)] is non-infinite. Also, for each open parenthesis transition e,
there exist at most |T2| close parenthesis transition e′ such that e′∈B[n[e], i[e]].

The algorithm can be modified (without changing the complexity) to com-
pute the shortest path through T by keeping track of parent pointers.

4.4 Pruned Expansion

Given a bounded-stack PDT T , the pruned expansion of T with threshold β is
an FST T ′β obtained by deleting from T ′ all states and transitions that belong to
no accepting path π in T ′ such that λ′(p[π])+w[π]+ ρ′(n[π]) ≤ d+β where d is
the shortest distance in T . A naive implementation consisting of fully expanding
T and then applying the FST pruning algorithm would lead to a complexity in
O(|T ′| log |T ′|)=O(e|T ||T |).

Assuming that the reverse TR of T is also bounded-stack, an algorithm whose
complexity is in O(|T | |T ′β |+ |T |3 log |T |) can be obtained by first applying the

shortest distance algorithm from the previous section to TR and then using
this to prune the expansion as it is generated. When invoking the pdtexpand

command, the --weight flag can be used to specify the threshold β and trigger
a pruned expansion of the input PDT.

4.5 Replacement

A recursive transitive network (RTN) R is specified by (N,Σ,∆, (Tν)ν∈N , S)
where N is an alphabet of nonterminals, Σ and ∆ are the input and output
alphabets, (Tν)ν∈N is a family of FSTs with input alphabet Σ ∪N and output
alphabet ∆, and S∈N is the root nonterminal.

A pair (x, y)∈Σ∗ ×∆∗ is accepted by R if there exists an accepting path π
in TS such that recursively replacing any transition with input label ν∈N by an
accepting path in Tν leads to a path π∗ with input x and output y. The weight
associated by R is the minimum over all such π∗ of w[π∗]+ρS(n[π

∗]).
Given an RTN R, the replacement of R is the PDT T equivalent to R defined

by the 10-tuple (Σ,∆,Π,Π,Q,E, I, F, σ, ρ) with Π = Q =
⋃

ν∈N Qν , I = IS ,
F =FS , ρ=ρS , and E=

⋃
ν∈N

⋃
e∈Eν

Ee where Ee={e} if i[e] 6∈ N and otherwise

Ee={(p[e], n[e], ǫ, w[e], Iµ), (f, n[e], ǫ, ρµ(f), n[e])|f ∈Fµ} with µ= i[e]∈N .
The complexity of the construction is in O(|T |). If |Fν | = 1, then |T | =

O(
∑

ν∈N |Tν |)=O(|R|). Creating a superfinal state for each Tν would lead to a
T whose size is always linear in the size of R.

4.6 Discussion

The PDT expansion algorithm can result in an FST that is not trim: it may
contain useless states or transitions not on accepting paths. OpenFst provides
the Connect operation that performs classical finite-automata trimming (using
a depth-first search). By analogy, a PDT can be defined trim if each state and
transition lies on a balanced, accepting path. Similarly, a PDT can be defined
pruned with threshold β if each state and transition lies on a balanced, accepting
path with weight w ≤ d+ β where d is the shortest distance in the PDT. In the
future, we wish to add algorithms Connect to trim a bounded-stack PDT and
Prune to prune a bounded-stack PDT within threshold β. Note these algorithms
are different from the connected or pruned expansion of a PDT, since the results
here, in general, are PDTs not FSTs.

5 Applications

5.1 Recognition

Suppose we have an acyclic weighted finite automaton L that represents the like-
lihood Pr[x|s] of some observation x given a sentence s ∈ L. For example, x could
be spoken or written words with Pr[x|s] being acoustically or optically-derived
likelihoods from an automatic speech recognition (ASR) or optical character
recognition (OCR) system. Further, suppose we have a weighted context-free
grammar G that represents the a priori probability Pr[s] of each sentence in the
grammar. We wish to compute the maximum a posteriori probability sentence,
argmax

s
Pr[x|s]Pr[s], given L and G.

To do so, we will first represent G as a pushdown automaton. A weighted
context-free grammar (CFG) can be specified by (N,Σ, P, S) where N is an

S

0
1a

6
a

2b

7c

3X 4d 5g

8X 9f
10

g 0
1a

6
a

2b

7c
11

(
12b

3 4d 5g

[
8 9f 10g

13c
)

]

(b) PDA

X
11 12b 13c

0,ε
1,εa

6,ε
a

2,εb

7,εc

11,(ε

11,[ε

12,(b

12,[b

13,(c

13,[c

3,εε

8,εε

4,εd

9,εf

5,εg

10,εg

(a) RTN (c) FSA

Fig. 4. Automata representations

alphabet of nonterminals, Σ is an alphabet of terminals, P ⊆ N × (N ∪ Σ)∗ ×
(R ∪ {∞}) are productions and S is the start symbol. A production (ν, α, w) is
sometimes written as ν → α/w.

To create a PDA that represents G, use each production (ν, α, w) to create
the linear FSA Aν,α,w that accepts α with weight w. Then for each non-terminal
ν, form the finite-state union Tν = ∪(ν,α,w)∈PAν,α,w. Then (N,Σ,Σ, (Tν)ν∈N , S)
is an RTN RG for which each accepting path π is in 1 : 1 correspondence with a
leftmost derivation of i(π) in G [?]. Finally, use the construction in Section 4.5
to represent RG as a PDA TG.

For example, consider the context-free grammar: S→abXdg, S→acXfg and
X→bc. Figure 4 shows several automata representations of this grammar. Fig-
ure 4a shows the RTN representation of this grammar with a 1:1 correspondence
between each production in the CFG and each accepting path in the RTN com-
ponents. Figure 4b shows the pushdown automaton representation generated
from the RTN with the replacement algorithm of Section 4.5. Since this gram-
mar’s productions have no cyclic dependencies, the PDA has bounded stack and
represents a regular language. Figure 4c shows the finite-state automaton repre-
sentation of this grammar generated by the PDA using the expansion algorithm
of Section 4.1.

For the probabilistic recognition example, we use negative log probabilities
in the weighted finite automaton L and in the construction of the PDT TG that
represents CFG G. Then, the maximum a posteriori sentence can be found with
ShortestPath(L ∩ TG). With the command line operations, this becomes:

pdtcompose --pdt parentheses=parens G.pda L.fsa |

pdtshortestpath --pdt parentheses=parens > Map.fsa

since composition between acceptors is intersection.1 The recognition has time
complexity in O(|L|3|TG|) and space complexity in O(|L|2|TG|) since TG has
bounded stack and is derived from an RTN.

An advantage of the RTN, PDA, and FSA representations is that they can
benefit from FSA epsilon removal, determinization and minimization algorithms

1 The compostion flag --left pdt=false would be required if the arguments were
exchanged.

0 1(S

2
)S

3
)A

4)B

5

)C

6
(B

a

b

7(S

(C

(A

(A

0

1
a

2b

3

]S

4

]B

[A

[B

5]A

6

]A

]C

[C

[S

0

1

a

2

b

3
)A

4

)B
5]S

6

]A

7

]C

[A

[B

a

b

9

)S

[S

8

)C
[C

)S

[S

(B

(S

(a) left parser (b) right parser (c) left corner parser

Fig. 5. Different parsing strategies using PDTs.

applied to their components (for RTNs and PDAs) or their entirety (for FSAs).
These steps could improve the time and space requirements of the recognition
example.

In a real-world example, this approach essentially is used to identify voice

action queries in the Google Android speech platform. For example, a production
could be S → send a message from X to Y where the non-terminals X and Y ,
for the sender and recipient, are rewritten as people’s names. A match identifies
a voice query as a messaging action.

5.2 Parsing

In the final example in the last section, we might not only wish to identify
a messaging action in a voice query but also want to parse the input to find
where the sender and recipient names are located. This is very similar to CFG
recognition but with the output augmented with the parse bracketing. A classical
approach is to augment the output tape of the PDT to include an index for each
production [?]. We take another approach here: the parentheses are chosen to
identify the production (or non-terminal) and the parentheses are retained in
the shortest path output. With the command line operations, this is done with
the flag --keep parentheses. This does not increase the time or space complexity
over recognition.

It has long been known that PDTs can be used to parse and that different
parsing strategies can be achieved by compiling the CFG into different PDTs
[?,?]. For example, the CFG: S → AB, S → CB, C → AS, A → a and B →
bcan be left parsed (‘top-down’) by the PDT in Figure 5a, right parsed (‘bottom-
up’) by the PDT in Figure 5b, and left-corner parsed by the PDT in Figure 5c

[?]. Note an equivalent right parser can be obtained from the left parser by
first reversing the right-hand side of the productions and then reversing the
transducer.

The classical method to apply these parsers is equivalent to intersecting the
PDT with the input string followed by the exponential expansion algorithm of
Section 4.1. Lang [?] showed that the cubic tabular method of Earley can be
naturally applied to PDTs; others give the weighted generalizations [?,?]. These
approaches are closely related to intersecting the PDT with the input string
followed by the shortest path algorithm of Section 4.3.

5.3 Translation

Hierarchical phrase-based translation, using a synchronous context-free transla-

tion grammar (SCFG) G together with an n-gram target language model M , is a
popular approach in machine translation [?]. The productions of the SCFG are of
the form S → 〈uAvBw, xByAz〉. This production says that uAvBw translates to
xByAz where u, v, w, x, y, z are terminal strings and A and B are non-terminals
that must be in 1 : 1 correspondence in the source and target of the translation
but not necessarily in the same order. If all the productions preserved this or-
der, it would be possible to represent the translation grammar as a pushdown
transducer but for a general SCFG this is not possible [?].

However, the result of the application of the input source string s to the
probabilistic translation grammar G, which represents all possible translations
of s by G, is compactly represented by a weighted RTN or PDA Ts,G [?] 2. It
has bounded-stack, since the input s has already been applied to the SCFG.

Applying the n-gram language model M to Ts,G and searching for the best
resulting translation, typically the computationally expensive steps in transla-
tion, becomes ShortestPath(Ts,G∩M). It has time complexity in O(|Ts,G||M |3)
and space complexity in O(|Ts,G||M |2) since Ts,G has bounded stack and is de-
rived from an RTN. An alternative approach first expands Ts,G to an FSA Fs,G

and then applies finite-state intersection and shortest path to give a time and
space complexity of O(|e|Fs,G||M |). Gonzalo, et al [?] give experimental results
comparing these two approaches on a range of grammar and n-gram language
model sizes in a large-scale English-Chinese translation system.

5.4 Discussion

For each of these tasks - recognition, parsing, or translation - real-world prob-
lems might involve very large CFGs. In these cases, the cubic complexity of the
shortest path algorithm may be prohibitive and inadmissable or inexact methods
may be used that are not guaranteed to return the shortest path. One general
approach is to prune away unpromising paths [?,?]. Another approach is to use
a weaker, smaller grammar in a first pass, output a hypothesis set, and rescore
that with the full grammar. For the latter method, the pruned expansion of
Section 4.4 can be used to output the hypothesis sets.

2 Another related representation, hypergraphs, are also often used for this purpose [?].

Acknowledgments

We thank Mehryar Mohri for suggesting a PDT algorithms library and discus-
sions and thank Bill Byrne, Adrià de Gispert and Gonzalo Iglesias for working
with us to adapt their pioneering automata approach for machine translation to
PDTs along with their comprehensive evaluations of these methods.

